Курс лекций. - Микропроцессоры

Программирование на языке СИ


Дата последнего обновления файла 5.10.04
Цифровая и вычислительная техника Микропроцессоры и цифровая обработка сигналов цифровые устройства и микропроцессоры

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ С51

ОГЛАВЛЕНИЕ



  1. ЯЗЫК ПРОГРАММИРОВАНИЯ С51
  2. ЭЛЕМЕНТЫ ЯЗЫКА СИ
    1. Используемые символы
    2. Константы
    3. Идентификатор
    4. Ключевые слова
    5. Использование комментариев в тексте программы
  3. ТИПЫ ДАННЫХ И ИХ ОБЪЯВЛЕНИЕ
    1. Категории типов данных
    2. Целый тип данных
    3. Числа с плавающей запятой
    4. Указатели
    5. Переменные перечислимого типа
    6. Массивы
    7. Структуры
    8. Объединения (смеси)
    9. Поля битов
    10. Переменные с изменяемой структурой
    11. Определение объектов и типов
    12. Инициализация данных
  4. ВЫРАЖЕНИЯ И ПРИСВАИВАНИЯ
    1. Операнды и операции
    2. Преобразования при вычислении выражений
    3. Операции отрицания и дополнения
    4. Операции разадресации и адреса
    5. Операция sizeof
    6. Мультипликативные операции
    7. Аддитивные операции
    8. Операции сдвига
    9. Поразрядные операции
    10. Логические операции
    11. Операция последовательного вычисления
    12. Условная операция
    13. Операции увеличения и уменьшения
    14. Простое присваивание
    15. Составное присваивание
    16. Приоритеты операций и порядок вычислений
    17. Побочные эффекты
    18. Преобразование типов
  5. ОПЕРАТОРЫ
    1. Оператор выражение
    2. Пустой оператор
    3. Составной оператор
    4. Оператор if
    5. Оператор switch
    6. Оператор break
    7. Оператор for
    8. Оператор while
    9. Оператор do while
    10. Оператор continue
    11. Оператор return
    12. Оператор goto
  6. ФУНКЦИИ
    1. Определение и вызов функций
    2. Вызов функции с переменным числом параметров
    3. Передача параметров функции main
  7. СТРУКТУРА ПРОГРАММЫ И КЛАССЫ ПАМЯТИ
    1. Исходные файлы и объявление переменных
    2. Объявления функций
    3. Время жизни и область видимости программных объектов
    4. Инициализация глобальных и локальных переменных

1.7. УКАЗАТЕЛИ И АДРЕСНАЯ АРИФМЕТИКА
1.7.1. Методы доступа к элементам массивов
1.7.2. Указатели на многомерные массивы
1.7.3. Операции с указателями
1.7.4. Массивы указателей
1.7.5. Динамическое размещение массивов

1.8. ДИРЕКТИВЫ ПРЕПРОЦЕССОРА
1.8.1. Директива #include
1.8.2. Директива #define
1.8.3. Директива #undef

Чтение по порядку глав


Эти символы отделяют друг от друга объекты, определяемые пользователем, к которым относятся константы и идентификаторы. Последовательность разделительных символов рассматривается компилятором как один символ (последовательность пробелов).

5. Управляющие последовательности, т.е. специальные символьные комбинации, используемые в функциях ввода и вывода информации. Управляющая последовательность строится на основе использования обратной дробной черты (\) (обязательный первый символ) и комбинацией латинских букв и цифр (табл.4).

Таблица 4

Управляющая последовательность Наименование Шестнадцатеричный код
\a Звонок 007
\b Возврат на шаг 008
\t Горизонтальная табуляция 009
\n Переход на новую строку 00A
\v Вертикальная табуляция 00B
\r Возврат каретки 00D
\f Новая страница 00C
\" Кавычки 022
\' Апостроф 027
\0 Ноль-символ 000
\\ Обратная дробная черта 05C
\OOO Восьмеричный код ASCII или ANSI символа  
\xHHH Шестнадцатеричный код ASCII или ANSI символа HHH
Управляющие последовательности \OOO и \xHHH (здесь O обозначает восьмеричную цифру; H обозначает шестнадцатеричную цифру) позволяет представить символ из кодовой таблицы ASCII или ANSI как последовательность восьмеричных или шестнадцатеричных цифр соответственно. Например символ возврата каретки может быть представлен следующими способами:

\r - управляющая последовательность,

\015 - восьмеричный код символа возврата каретки,

\x00D - шестнадцатеричный код символа возврата каретки.

Следует отметить, что в строковых константах всегда обязательно задавать все три цифры в управляющей последовательности. Например отдельную управляющую последовательность \n (переход на новую строку) можно представить как \010 или \xA, но в строковых константах необходимо задавать все три цифры, в противном случае символ или символы следующие за управляющей последовательностью будут рассматриваться как ее недостающая часть. Например:

"ABCDE\x009FGH" данная строковая команда будет напечатана с использованием определенных функций языка СИ, как два отдельных слова ABCDE и FGH, разделенные табуляцией, в этом случае если указать неполную управляющую строку "ABCDE\x09FGH",то при печати появится строка ABCDEЯGH, так как компилятор воспримет последовательность \x09F как символ "Я".



Отметим тот факт, что, если обратная дробная черта предшествует символу не являющемуся управляющей последовательностью (т.е. не включенному в табл.4) и не являющемуся цифрой, то эта черта игнорируется, а сам символ представляется как литеральный. Например:

символ \h представляется символом h в строковой или символьной константе.

Кроме определения управляющей последовательности, символ обратной дробной черты (\) используется также как символ продолжения. Если за (\) следует (\n), то оба символа игнорируются, а следующая строка является продолжением предыдущей. Это свойство может быть использовано для записи длинных строк.

1.2. Константы

В языке программирования С разделяют четыре типа констант: целые знаковые и беззнаковые константы, константы с плавающей запятой, символьные константы и литеральные строки.

Константа может быть представлена в десятичной, восьмеричной или шестнадцатеричной форме.

Десятичная константа состоит из одной или нескольких десятичных цифр, причем первая цифра не может быть нулем (иначе число будет воспринято как восьмеричное).

Восьмеричная константа состоит из обязательного нуля и одной или нескольких восьмеричных цифр (среди цифр должны отсутствовать цифры восемь и девять, так как эти цифры не входят в восьмеричную систему счисления).

Шестнадцатеричная константа начинается с обязательной последовательности символов 0х или 0Х и содержит одну или несколько шестнадцатеричных цифр (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Примеры целых констант: Десятичная Восьмеричная Шестнадцатеричная константа константа константа 16 020 0x10 127 0117 0x2B 240 0360 0XF0 Если требуется сформировать отрицательную целую константу, то используют знак "-" перед записью константы (который будет называться унарным минусом). Например: -0x2A, -088, -16 .

Каждой целой константе присваивается тип, определяющий преобразования, которые должны быть выполнены, если константа используется в выражениях. Тип константы определяется следующим образом:

- десятичные константы рассматриваются как знаковые числа, и им присваивается тип int (целая) или long (длинная целая) в соответствии со значением константы.


Если константа меньше 32768, то ей присваивается тип int в противном случае long.

- восьмеричным и шестнадцатеричным константам присваивается тип int, unsigned int (беззнаковая целая), long или unsigned long в зависимости от значения константы согласно табл 5.

Таблица 5

Диапазон шестнадцатеричных константДиапазон восьмеричных константТип
0x0 - 0x7FFF 0 - 077777 int
0X8000 - 0XFFFF 0100000 - 0177777 unsigned int
0X10000 - 0X7FFFFFFF 0200000 - 017777777777 long
0X80000000 - 0XFFFFFFFF 020000000000 - 037777777777 unsigned long
Для того чтобы любую целую константу определить типом long, достаточно в конце константы поставить букву "l" или "L". Пример:

5l, 6l, 128L, 0105L, OX2A11L.

Константа с плавающей запятой - десятичное число, представленное в виде действительного числа с десятичной запятой и порядком числа. Формат записи константы с плавающей запятой:

[ цифры ].[ цифры ] [ Е|e [+|-] цифры ] .

Число с плавающей запятой состоит из целой и дробные части и (или) порядка числа. Константы с плавающей запятой представляют собой положительные числа двойной точности (имеют тип double). Для определения отрицательной величины необходимо сформировать константное выражение, состоящее из знака минуса и положительной константы.

Примеры: 115.75, 1.5Е-2, -0.025, .075, -0.85Е2

Символьная константа - представляется символом заключенном в апострофы. Управляющая последовательность рассматривается как одиночный символ, ее допустимо использовать в символьных константах. Значением символьной константы является числовой код символа. Примеры:

' '- пробел ,

'Q'- буква Q ,

'\n' - символ новой строки ,

'\\' - обратная дробная черта ,

'\v' - вертикальная табуляция .

Символьные константы имеют тип int и при преобразовании типов дополняются знаком.

Строковая константа (литерал или литеральная строка) - последовательность символов (включая строковые и прописные буквы русского и латинского а также цифры) заключенные в кавычки (").


Например: "Школа N 35", "город Тамбов", "YZPT КОД".

Отметим, что все управляющие символы, кавычка ("), обратная дробная черта (\) и символ новой строки в строковом литерале и в символьной константе представляются соответствующими управляющими последовательностями. Каждая управляющая последовательность представляется как один символ. Например, при печати литерала "Школа \n N 35" его часть "Школа" будет напечатана на одной строке, а вторая часть "N 35" на следующей строке.

Символы литеральной строки сохраняются в оперативной памяти. В конец каждой литеральной строки компилятором добавляется нулевой символ, который можно записать как: "\0".

Литеральная строка рассматривается как массив символов (char[ ]). Отметим важную особенность, число элементов массива равно числу символов в строке плюс 1, так как нулевой символ (символ конца строки) также является элементом массива. Все литеральные строки рассматриваются компилятором как различные объекты. Одна литеральная строка может выводиться на дисплей как несколько строк. Такие строки разделяются при помощи обратной дробной черты и символа возврата каретки \n. На одной строке исходного текста программы можно записать только одну литеральную строку. Если необходимо продолжить написание одной и той же литеральной строки на следующей строке исходного текста, то в конце строки исходного текста можно поставить обратную строку. Например исходный текст:

"строка неопределенной \

длины"

полностью идентичен литеральной строке:

"строка неопределенной длины".

Однако более удобно для объединения литеральных строк использовать символ (символы) пробела. Если в программе встречаются два или более литерала, разделенные только пробелами или символами табуляции, то они будут рассматриваться как одна литеральная строка. Этот принцип можно использовать для формирования литералов, занимающих более одной строки.

1.3. Идентификатор

В качестве идентификатора может быть использована последовательность строчных или прописных букв латинского алфавита и цифр, а также символов подчёркивания '_'.


Идентификатор может начинаться только с буквы или символа '_', но ни в коем случае с цифры. Строчные и прописные буквы в идентификаторе различаются. Например: идентификаторы abc и ABC, A128B и a128b воспринимаются как разные.

Важной особенностью является то, что компилятор допускает любое количество символов в идентификаторе, хотя значимыми являются первые 31 символ. Идентификатор создается на этапе объявления переменной, функции, структуры и т.п. после этого его можно использовать в последующих операторах разрабатываемой программы. Следует отметить важные особенности при определении идентификатора.

Во первых, идентификатор не должен совпадать с ключевыми словами, с зарезервированными словами и именами функций из библиотеки компилятора языка С.

Во вторых, следует обратить особое внимание на использование символа подчеркивание (_) в качестве первого символа идентификатора, поскольку идентификаторы, построенные таким образом, могут совпадать с именами системных функций или переменных, в результате чего они станут недоступными.

1.4. Ключевые слова

Ключевые слова - это зарезервированные идентификаторы, которые используются для построения операторов языка.

Список ключевых слов:

alien _at_ auto bdata bit break case char code compact continue data default do double else enum extern far float for idata if int interrupt large long pdata _priority_ reentrant register return sbit sfr sfr16 signed sizeof short small struct switch typedef _task_ union unsigned void volatile while Ключевые слова не могут быть использованы в качестве идентификаторов.

1.5. Запись комментариев в тексте программы

Комментарий - это набор символов, которые игнорируются компилятором.

В языке программирования C51 возможно использование двух типов комментариев:

  1. комментарий, который может быть использован внутри строки;
  2. комментарий, который игнорирует символы до конца строки.
Первый вид комментария начинается парой символов (/* ) и завершается парой символов (*/). Эта особенность позволяет использовать этот вид комментария внутри операторов языка программирования.


Кроме того, комментарий может занимать несколько строк. Например:

/* комментарии к программе */ /* начало алгоритма */ или /* комментарии можно записать в следующем виде, однако надо быть осторожным, чтобы внутри последовательности, которая игнорируется компилятором, не попались операторы программы, которые также будут игнорироваться */ В тексте комментария не может быть символов, определяющих начало и конец комментариев (/* и */). Пример неправильного определения комментариев:

/* комментарии к алгоритму /* решение краевой задачи */ */ или /* комментарии к алгоритму решения */ краевой задачи */ Второй вид комментария начинается парой символов (// ) и завершается концом строки. Этот вид комментария похож на комментарий языка программирования низкого уровня, но иногда его использование более выгодно по сравнению с предыдущим вариантом. Особенно оправдано использование этого вида комментария при отладке программы, когда нужно временно исключать операторы из исходного текста программы. Пример записи этого вида комментария:

PrmDem(); //Получить, отфильтровать и демодулировать сигнал [ Оглавление | Вперед ]



Использование констант должно подчиняться следующим правилам:

  1. Объявляемая переменная может содержать повторяющиеся значения констант.
  2. Идентификаторы в списке констант должны быть отличны от всех других идентификаторов в той же области видимости, включая имена обычных переменных и идентификаторы из других списков констант.
  3. Имена типов перечислений должны быть отличны от других имен типов перечислений, структур и смесей в этой же области видимости.
  4. Значение может следовать за последним элементом списка перечисления.
Во втором формате для объявления переменной перечислимого типа используется уже готовый тип переменной уже объявленный ранее. Например:

enum week rab1;

К переменной перечислимого типа можно обращаться при помощи указателей. При этом необходимо заранее определить тип переменной, на которую будет ссылаться указатель. Это может быть сделано, как описывалось выше или при помощи оператора typedef. Например:

Typedef enum {SUB = 0, /* константе SUB присвоено значение 0 */ VOS = 0, /* константе VOS присвоено значение 0 */ POND, /* константе POND присвоено значение 1 */ VTOR, /* константе VTOR присвоено значение 2 */ SRED, /* константе SRED присвоено значение 3 */ HETV, /* константе HETV присвоено значение 4 */ PJAT /* константе PJAT присвоено значение 5 */ } week; Этот оператор не объявляет переменную, а только определяет тип переменной, отличающийся от стандартного. В дальнейшем этот тип может быть использован для объявления переменных и указателей на переменные.

1.2.6. Массивы

Массивы - это группа элементов одинакового типа (double, float, int и т.п.). Из объявления массива компилятор должен получить информацию о типе элементов массива и их количестве. Объявление массива имеет два формата:

спецификатор-типа описатель [константное-выражение];
спецификатор-типа описатель [ ];

Описатель - это идентификатор массива.

Спецификатор-типа задает тип элементов объявляемого массива. Элементами массива не могут быть функции и элементы типа void.

Константное-выражение в квадратных скобках задает количество элементов массива.


Константное- выражение при объявлении массива может быть опущено в следующих случаях:

  • при объявлении массив инициализируется,
  • массив объявлен как формальный параметр функции,
  • массив объявлен как ссылка на массив, явно определенный в другом файле.
В языке СИ определены только одномерные массивы, но поскольку элементом массива может быть массив, можно определить и многомерные массивы. Они формализуются списком константных-выражений следующих за идентификатором массива, причем каждое константное-выражение заключается в свои квадратные скобки.

Каждое константное-выражение в квадратных скобках определяет число элементов по данному измерению массива, так что объявление двухмерного массива содержит два константных-выражения, трехмерного - три и т.д. Отметим, что в языке СИ первый элемент массива имеет индекс равный 0.

Примеры:

int a[2][3]; /* представлено в виде матрицы a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] */ double b[10]; /* вектор из 10 элементов имеющих тип double */ int w[3][3] = { { 2, 3, 4 }, { 3, 4, 8 }, { 1, 0, 9 } }; В последнем примере объявлен массив w[3][3]. Списки, выделенные в фигурные скобки, соответствуют строкам массива, в случае отсутствия скобок инициализация будет выполнена неправильно.

В языке СИ можно использовать сечения массива, как и в других языках высокого уровня (PL1 и т.п. ), однако на использование сечений накладывается ряд ограничений. Сечения формируются вследствие опускания одной или нескольких пар квадратных скобок. Пары квадратных скобок можно отбрасывать только справа налево и строго последовательно. Сечения массивов используются при организации вычислительного процесса в функциях языка СИ, разрабатываемых пользователем.

Примеры:

int s[2][3];

Если при обращении к некоторой функции написать s[0], то будет передаваться нулевая строка массива s.

int b[2][3][4];

При обращении к массиву b можно написать, например, b[1][2] и будет передаваться вектор из четырех элементов, а обращение b[1] даст двухмерный массив размером 3 на 4.


Нельзя написать b[2][4], подразумевая, что передаваться будет вектор, потому что это не соответствует ограничению наложенному на использование сечений массива.

Пример объявления массива символов.

char str[] = "объявление массива символов";

Следует учитывать, что в символьной строке находится на один элемент больше, так как последним элементом строки должен быть '\0'.

1.2.7. Структуры

Cтруктуры - это составной объект, в который входят элементы любых типов, за исключением функций. В отличие от массива, который является однородным объектом, структура может быть неоднородной. Тип структуры определяется записью вида:

struct { список определений }

В структуре обязательно должен быть указан хотя бы один компонент. Определение структур имеет следующий вид:

тип-данных описатель;

где тип-данных указывает тип структуры для объектов, определяемых в описателях. В простейшей форме описатели представляют собой идентификаторы или массивы.

Пример:

struct { double x,y; } s1, s2, sm[9]; struct { int year; char moth, day; } date1, date2; Переменные s1, s2 определяются как структуры, каждая из которых состоит из двух компонент х и у. Переменная sm определяется как массив из девяти структур. Каждая из двух переменных date1, date2 состоит из трех компонентов year, moth, day. >p>Существует и другой способ связывания имени с типом структуры, он основан на использовании тега структуры. Тег структуры аналогичен тегу перечислимого типа. Тег структуры определяется следующим образом:

struct тег { список описаний; };

где тег является идентификатором.

В приведенном ниже примере идентификатор student описывается как тег структуры:

struct student { char name[25]; int id, age; char prp; }; Тег структуры используется для последующего объявления структур данного вида в форме:

struct тег список-идентификаторов;

Пример:

struct studeut st1,st2;

Использование тегов структуры необходимо для описания рекурсивных структур. Ниже рассматривается использование рекурсивных тегов структуры.



struct node { int data; struct node * next; } st1_node; Тег структуры node действительно является рекурсивным, так как он используется в своем собственном описании, т.е. в формализации указателя next. Структуры не могут быть прямо рекурсивными, т.е. структура node не может содержать компоненту, являющуюся структурой node, но любая структура может иметь компоненту, являющуюся указателем на свой тип, как и сделано в приведенном примере.

Доступ к компонентам структуры осуществляется с помощью указания имени структуры и следующего через точку имени выделенного компонента, например:

st1.name="Иванов"; st2.id=st1.id; st1_node.data=st1.age;

1.2.8. Объединения (смеси)

Объединение подобно структуре, однако в каждый момент времени может использоваться (или другими словами быть ответным) только один из элементов объединения. Тип объединения может задаваться в следующем виде:

union { описание элемента 1; ... описание элемента n; }; Главной особенностью объединения является то, что для каждого из объявленных элементов выделяется одна и та же область памяти, т.е. они перекрываются. Хотя доступ к этой области памяти возможен с использованием любого из элементов, элемент для этой цели должен выбираться так, чтобы полученный результат не был бессмысленным.

Доступ к элементам объединения осуществляется тем же способом, что и к структурам. Тег объединения может быть формализован точно так же, как и тег структуры.

Объединение применяется для следующих целей:

- инициализации используемого объекта памяти, если в каждый момент времени только один объект из многих является активным;

- интерпретации основного представления объекта одного типа, как если бы этому объекту был присвоен другой тип.

Память, которая соответствует переменной типа объединения, определяется величиной, необходимой для размещения наиболее длинного элемента объединения. Когда используется элемент меньшей длины, то переменная типа объединения может содержать неиспользуемую память. Все элементы объединения хранятся в одной и той же области памяти, начиная с одного адреса.



Пример:

union { char fio[30]; char adres[80]; int vozrast; int telefon; } inform; union { int ax; char al[2]; } ua; При использовании объекта infor типа union можно обрабатывать только тот элемент который получил значение, т.е. после присвоения значения элементу inform.fio, не имеет смысла обращаться к другим элементам. Объединение ua позволяет получить отдельный доступ к младшему ua.al[0] и к старшему ua.al[1] байтам двухбайтного числа ua.ax .

1.2.9. Поля битов

Элементом структуры может быть битовое поле, обеспечивающее доступ к отдельным битам памяти. Вне структур битовые поля объявлять нельзя. Нельзя также организовывать массивы битовых полей и нельзя применять к полям операцию определения адреса. В общем случае тип структуры с битовым полем задается в следующем виде:

struct { unsigned идентификатор 1 : длина-поля 1; unsigned идентификатор 2 : длина-поля 2; } длинна - поля задается целым выражением или константой. Эта константа определяет число битов, отведенное соответствующему полю. Поле нулевой длинны обозначает выравнивание на границу следующего слова.

Пример:

struct { unsigned a1 : 1; unsigned a2 : 2; unsigned a3 : 5; unsigned a4 : 2; } prim; Структуры битовых полей могут содержать и знаковые компоненты. Такие компоненты автоматически размещаются на соответствующих границах слов, при этом некоторые биты слов могут оставаться неиспользованными.

Ссылки на поле битов выполняются точно так же, как и компоненты общих структур. Само же битовое поле рассматривается как целое число, максимальное значение которого определяется длиной поля.

1.2.10. Переменные с изменяемой структурой

Очень часто некоторые объекты программы относятся к одному и тому же классу, отличаясь лишь некоторыми деталями. Рассмотрим, например, представление геометрических фигур. Общая информация о фигурах может включать такие элементы, как площадь, периметр. Однако соответствующая информация о геометрических размерах может оказаться различной в зависимости от их формы.

Рассмотрим пример, в котором информация о геометрических фигурах представляется на основе комбинированного использования структуры и объединения.



struct figure { double area,perimetr; /* общие компоненты */ int type; /* признак компонента */ union /* перечисление компонент */ { double radius; /* окружность */ double a[2]; /* прямоугольник */ double b[3]; /* треугольник */ } geom_fig; } fig1, fig2 ; В общем случае каждый объект типа figure будет состоять из трех компонентов: area, perimetr, type. Компонент type называется меткой активного компонента, так как он используется для указания, какой из компонентов объединения geom_fig является активным в данный момент. Такая структура называется переменной структурой, потому что ее компоненты меняются в зависимости от значения метки активного компонента (значение type).

Отметим, что вместо компоненты type типа int, целесообразно было бы использовать перечисляемый тип. Например, такой

enum figure_chess { CIRCLE, BOX, TRIANGLE } ; Константы CIRCLE, BOX, TRIANGLE получат значения соответственно равные 0, 1, 2. Переменная type может быть объявлена как имеющая перечислимый тип :

enum figure_chess type;

В этом случае компилятор СИ предупредит программиста о потенциально ошибочных присвоениях, таких, например, как

figure.type = 40;

В общем случае переменная структуры будет состоять из трех частей: набор общих компонент, метки активного компонента и части с меняющимися компонентами. Общая форма переменной структуры, имеет следующий вид:

struct { общие компоненты; метка активного компонента; union { описание компоненты 1 ; описание компоненты 2 ; ::: описание компоненты n ; } идентификатор-объединения ; } идентификатор-структуры ; Пример определения переменной структуры с именем helth_record

struct { /* общая информация */ char name [25]; /* имя */ int age; /* возраст */ char sex; /* пол */ /* метка активного компонента */ /* (семейное положение) */ enum merital_status ins; /* переменная часть */ union { /* холост */ /* нет компонент */ struct { /* состоит в браке */ char marripge_date[8]; char spouse_name[25]; int no_children; } marriage_info; /* разведен */ char date_divorced[8]; } marital_info; } health_record; enum marital_status { SINGLE, /* холост */ MARRIGO, /* женат */ DIVOREED /* разведен */ } ; Обращаться к компонентам структуры можно при помощи ссылок:



helth_record.neme, helth_record.ins, helth_record.marriage_info.marriage_date .

1.2.11. Определение объектов и типов

Как уже говорилось выше, все переменные используемые в программах на языке СИ, должны быть объявлены. Тип объявляемой переменной зависит от того, какое ключевое слово используется в качестве спецификатора типа и является ли описатель простым идентификатором или же комбинацией идентификатора с модификатором указателя (звездочка), массива (квадратные скобки) или функции (круглые скобки).

При объявлении простой переменной, структуры, смеси или объединения, а также перечисления, описатель - это простой идентификатор. Для объявления указателя, массива или функции идентификатор модифицируется соответствующим образом: звездочкой слева, квадратными или круглыми скобками справа.

Отметим важную особенность языка СИ, при объявлении можно использовать одновременно более одного модификатора, что дает возможность создавать множество различных сложных описателей типов.

Однако надо помнить, что некоторые комбинации модификаторов недопустимы:

- элементами массивов не могут быть функции,

- функции не могут возвращать массивы или функции.

При инициализации сложных описателей квадратные и круглые скобки (справа от идентификатора) имеют приоритет перед звездочкой (слева от идентификатора). Квадратные или круглые скобки имеют один и тот же приоритет и раскрываются слева направо. Спецификатор типа рассматривается на последнем шаге, когда описатель уже полностью проинтерпретирован. Можно использовать круглые скобки, чтобы поменять порядок интерпретации на необходимый.

Для интерпретации сложных описаний предлагается простое правило, которое звучит как "изнутри наружу", и состоит из четырех шагов.

1. Начать с идентификатора и посмотреть вправо, есть ли квадратные или круглые скобки.

2. Если они есть, то проинтерпретировать эту часть описателя и затем посмотреть налево в поиске звездочки.

3. Если на любой стадии справа встретится закрывающая круглая скобка, то вначале необходимо применить все эти правила внутри круглых скобок, а затем продолжить интерпретацию.



4. Интерпретировать спецификатор типа.

Примеры:

int * ( * comp [10]) (); 6 5 3 1 2 4 В данном примере объявляется переменная comp (1), как массив из десяти (2) указателей (3) на функции (4), возвращающие указатели (5) на целые значения (6).

char * ( * ( * var ) () ) [10]; 7 6 4 2 1 3 5 Переменная var (1) объявлена как указатель (2) на функцию (3) возвращающую указатель (4) на массив (5) из 10 элементов, которые являются указателями (6) на значения типа char.

Кроме объявлений переменных различных типов, имеется возможность объявить типы. Это можно сделать двумя способами. Первый способ - указать имя тега при объявлении структуры, объединения или перечисления, а затем использовать это имя в объявлении переменных и функций в качестве ссылки на этот тег. Второй - использовать для объявления типа ключевое слово typedef.

При объявлении с ключевым словом typedef, идентификатор стоящий на месте описываемого объекта, является именем вводимого в рассмотрение типа данных, и далее этот тип может быть использован для объявления переменных.

Отметим, что любой тип может быть объявлен с использованием ключевого слова typedef, включая типы указателя, функции или массива. Имя с ключевым словом typedef для типов указателя, структуры, объединения может быть объявлено прежде чем эти типы будут определенны, но в пределах видимости объявителя.

Примеры:

typedef double (* MATH)( ); /* MATH - новое имя типа, представляющее указатель на функцию, возвращающую значения типа double */ MATH cos; /* cos указатель на функцию, возвращающую значения типа double */ /* Можно провести эквивалентное объявление */ double (* cos)( ); typedef char FIO[40] /* FIO - массив из сорока символов */ FIO person; /* Переменная person - массив из сорока символов */ /* Это эквивалентно объявлению */ char person[40]; При объявлении переменных и типов здесь были использованы имена типов (MATH FIO). Помимо этого, имена типов могут еще использоваться в трех случаях: в списке формальных параметров, в объявлении функций, в операциях приведения типов и в операции sizeof (операция приведения типа).



Именами типов для основных типов, типов перечисления, структуры и смеси являются спецификаторы типов для этих типов. Имена типов для типов указателя массива и функции задаются при помощи абстрактных описателей следующим образом:

спецификатор-типа абстрактный-описатель;

Абстрактный-описатель - это описатель без идентификатора, состоящий из одного или более модификаторов указателя, массива или функции. Модификатор указателя (*) всегда задается перед идентификатором в описателе, а модификаторы массива [] и функции () - после него. Таким образом, чтобы правильно интерпретировать абстрактный описатель, нужно начать интерпретацию с подразумеваемого идентификатора.

Абстрактные описатели могут быть сложными. Скобки в сложных абстрактных описателе задают порядок интерпретации подобно тому, как это делалось при интерпретации сложных описателей в объявлениях.

1.2.12. Инициализация данных

При объявлении переменной ей можно присвоить начальное значение, присоединяя инициатор к описателю. Инициатор начинается со знака "=" и имеет следующие формы.

Формат 1: = инициатор;

Формат 2: = { список - инициаторов };

Формат 1 используется при инициализации переменных основных типов и указателей, а формат 2 - при инициализации составных объектов.

Примеры:

char tol = 'N';

Переменная tol инициализируется символом 'N'.

const long megabute = (1024 * 1024);

Немодифицируемая переменная megabute инициализируется константным выражением после чего она не может быть изменена.

static int b[2][2] = {1,2,3,4};

Инициализируется двухмерный массив b целых величин элементам массива присваиваются значения из списка. Эта же инициализация может быть выполнена следующим образом :

static int b[2][2] = { { 1,2 }, { 3,4 } };

При инициализации массива можно опустить одну или несколько размерностей

static int b[3[] = { { 1,2 }, { 3,4 } };

Если при инициализации указано меньше значений для строк, то оставшиеся элементы инициализируются 0, т.е. при описании

static int b[2][2] = { { 1,2 }, { 3 } };



элементы первой строки получат значения 1 и 2, а второй 3 и 0.

При инициализации составных объектов, нужно внимательно следить за использованием скобок и списков инициализаторов.

Примеры:

struct complex { double real; double imag; } comp [2][3] = { { {1,1}, {2,3}, {4,5} }, { {6,7}, {8,9}, {10,11} } }; В данном примере инициализируется массив структур comp из двух строк и трех столбцов, где каждая структура состоит из двух элементов real и imag.

struct complex comp2 [2][3] = { {1,1},{2,3},{4,5}, {6,7},{8,9},{10,11} }; В этом примере компилятор интерпретирует рассматриваемые фигурные скобки следующим образом:

- первая левая фигурная скобка - начало составного инициатора для массива comp2;

- вторая левая фигурная скобка - начало инициализации первой строки массива comp2[0]. Значения 1,1 присваиваются двум элементам первой структуры;

- первая правая скобка (после 1) указывает компилятору, что список инициаторов для строки массива окончен, и элементы оставшихся структур в строке comp[0] автоматически инициализируются нулем;

- аналогично список {2,3} инициализирует первую структуру в строке comp[1], а оставшиеся структуры массива обращаются в нули;

- на следующий список инициализаторов {4,5} компилятор будет сообщать о возможной ошибке так как строка 3 в массиве comp2 отсутствует.

При инициализации объединения задается значение первого элемента объединения в соответствии с его типом.

Пример:

union tab { unsigned char name[10]; int tab1; } pers = {'A','H','T','O','H'}; Инициализируется переменная pers.name, и так как это массив, для его инициализации требуется список значений в фигурных скобках. Первые пять элементов массива инициализируются значениями из списка, остальные нулями.

Инициализацию массива символов можно выполнить путем использования строкового литерала.

char stroka[ ] = "привет";

Инициализируется массив символов из 7 элементов, последним элементом (седьмым) будет символ '\0', которым завершаются все строковые литералы.

В том случае, если задается размер массива, а строковый литерал длиннее, чем размер массива, то лишние символы отбрасываются.

Следующее объявление инициализирует переменную stroka как массив, состоящий из семи элементов.

char stroka[5] = "привет";

Это объявление будет восприниматься как ошибка.

Если строка короче, чем размер массива, то оставшиеся элементы массива заполняются нулями.

Отметим, что инициализация переменной типа tab может иметь следующий вид:

union tab pers1 = "Антон";

и, таким образом, в символьный массив попадут символы:

'А','Н','Т','О','Н','\0',

а остальные элементы будут инициализированы нулем.

[ Назад | Оглавление | Вперед ]



При преобразовании целого со знаком к целому без знака, целое со знаком преобразуется к размеру целого без знака и результат рассматривается как значение без знака.

Преобразование целого со знаком к плавающему типу происходит без потери] информации, за исключением случая преобразования значения типа long int или unsigned long int к типу float, когда точность часто может быть потеряна.

Преобразование целых типов без знака. Целое без знака преобразуется к более короткому целому без знака или со знаком путем усечения старших битов. Целое без знака преобразуется к более длинному целому без знака или со знаком путем дополнения нулей слева.

Когда целое без знака преобразуется к целому со знаком того же размера, битовое представление не изменяется. Поэтому значение, которое оно представляет, изменяется, если знаковый бит установлен (равен 1), т.е. когда исходное целое без знака больше чем максимальное положительное целое со знаком, такой же длины.

Целые значения без знака преобразуются к плавающему типу, путем преобразования целого без знака к значению типа signed long, а затем значение signed long преобразуется в плавающий тип. Преобразования из unsigned long к типу float, double или long double производятся с потерей информации, если преобразуемое значение больше, чем максимальное положительное значение, которое может быть представлено для типа long.

Преобразования плавающих типов. Величины типа float преобразуются к типу double без изменения значения. Величины double и long double преобразуются к float c некоторой потерей точности. Если значение слишком велико для float, то происходит потеря значимости, о чем сообщается во время выполнения.

При преобразовании величины с плавающей точкой к целым типам она сначала преобразуется к типу long (дробная часть плавающей величины при этом отбрасывается), а затем величина типа long преобразуется к требуемому целому типу. Если значение слишком велико для long, то результат преобразования не определен.

Преобразования из float, double или long double к типу unsigned long производится с потерей точности, если преобразуемое значение больше, чем максимально возможное положительное значение, представленное типом long.



Преобразование типов указателя. Указатель на величину одного типа может быть преобразован к указателю на величину другого типа. Однако результат может быть не определен из-за отличий в требованиях к выравниванию и размерах для различных типов.

Указатель на тип void может быть преобразован к указателю на любой тип, и указатель на любой тип может быть преобразован к указателю на тип void без ограничений. Значение указателя может быть преобразовано к целой величине. Метод преобразования зависит от размера указателя и размера целого типа следующим образом:

- если размер указателя меньше размера целого типа или равен ему, то указатель преобразуется точно так же, как целое без знака;

- если указатель больше, чем размер целого типа, то указатель сначала преобразуется к указателю с тем же размером, что и целый тип, и затем преобразуется к целому типу.

Целый тип может быть преобразован к адресному типу по следующим правилам:

- если целый тип того же размера, что и указатель, то целая величина просто рассматривается как указатель (целое без знака);

- если размер целого типа отличен от размера указателя, то целый тип сначала преобразуется к размеру указателя (используются способы преобразования, описанные выше), а затем полученное значение трактуется как указатель.

Преобразования при вызове функции. Преобразования, выполняемые над аргументами при вызове функции, зависят от того, был ли задан прототип функции (объявление "вперед") со списком объявлений типов аргументов.

Если задан прототип функции и он включает объявление типов аргументов, то над аргументами в вызове функции выполняются только обычные арифметические преобразования.

Эти преобразования выполняются независимо для каждого аргумента. Величины типа float преобразуются к double, величины типа char и short преобразуются к int, величины типов unsigned char и unsigned short преобразуются к unsigned int. Могут быть также выполнены неявные преобразования переменных типа указатель. Задавая прототипы функций, можно переопределить эти неявные преобразования и позволить компилятору выполнить контроль типов.

Преобразования при приведении типов. Явное преобразование типов может быть осуществлено посредством операции приведения типов, которая имеет формат:

( имя-типа ) операнд .

В приведенной записи имя-типа задает тип, к которому должен быть преобразован операнд.

Пример:

int i=2; long l=2; double d; float f; d=(double)i * (double)l; f=(float)d; В данном примере величины i,l,d будут явно преобразовываться к указанным в круглых скобках типам.

[ Назад | Оглавление | Вперед ]


Содержание раздела